Locality Sensitive Hashing an algorithm for "Sublinear Time Similarity Search"

Rameshwar Pratap rameshwar.pratap@gmail.com

March 21, 2018

Outline

- Similarity search problem
- **2** LSH an algorithm for sublinear time similarity search
- Variants of LSH
 - Sets and Jaccard similarity
 - Binary data and Hamming distance
 - Real valued vectors and Cosine similarity
 - Real valued vectors and Euclidean distance

1 Similarity Search Problem

2 LSH – a tool for sublinear time similarity search

3 Variants of LSH

4 LSH for other well-known similarity measure

Similarity Search in High Dimension

Given a query object and a database of objects the problem is to find a similar object w.r.t. the query object.

Similarity Search in High Dimension

Given a query object and a database of objects the problem is to find a similar object w.r.t. the query object.

Exact nearest neighbor

- given a set $\mathcal{X} = \{x_i\}_{i=1}^n$ of objects (off-line)
- 2 given a query object q (query time)
- **③** find the object in \mathcal{X} that is the most similar to q

Exact nearest neighbor

- given a set $\mathcal{X} = \{x_i\}_{i=1}^n$ of objects (off-line)
- 2 given a query object q (query time)
- **③** find the object in \mathcal{X} that is the most similar to q

Exact nearest neighbor for Euclidean distance

Algorithm	Query Time	Space
Full indexing	O(d log n)	n ^{O(d)}
Linear scan	O(dn)	O(dn)

Feasible only when d is very small – "Curse of dimensionality".

Idea: rather than retrieving for the exact nearest neighbor, make a "good guess" of the nearest neighbor.

Approximate Nearest Neighbor: Problem Statement

- given a set \mathcal{X} of objects (off-line)
- given accuracy parameter ε (off-line)
- given a query object q (query time)
- find an object $z \in \mathcal{X}$ that is most similar to q such that

 $\operatorname{dis}(q, z) \le (1 + \varepsilon) \operatorname{dis}(q, x), \forall x \in \mathcal{X}$

Approximate Similarity Search can be done in sublinear time with provable guarantee.

Let's first focus on an easier version of the problem –approximate near neighbor

Approximate Near Neighbor

- given a set \mathcal{X} of objects (off-line)
- given accuracy parameter ε and distance threshold R (off-line)
- given a query object q (query time)
- find an object $z \in \mathcal{X}$ that is most similar to q such that
 - if there is object y in \mathcal{X} s.t. $\operatorname{dis}(q, y) \leq R$, then return object z in \mathcal{X} s.t. $\operatorname{dis}(q, z) \leq (1 + \varepsilon)R$.
 - if there is no object y in \mathcal{X} s.t. $\operatorname{dis}(q, y) \leq (1 + \varepsilon)R$, then return NO!.

Approximate Near Neighbor

Approximate Near(est) Neighbor

• Using "approximate near neighbor", we can solve "approximate nearest neighbor".

Approximate Near(est) Neighbor

- Using "approximate near neighbor", we can solve "approximate nearest neighbor".
- Let d and D be the smallest and largest pair-wise distance, then set $R = d, (1 + \varepsilon)d, (1 + \varepsilon^2)d, \dots, D$

Approximate Near(est) Neighbor

- Using "approximate near neighbor", we can solve "approximate nearest neighbor".
- Let d and D be the smallest and largest pair-wise distance, then set $R = d, (1 + \varepsilon)d, (1 + \varepsilon^2)d, \dots, D$
- Number of iterations: $O\left(\log_{1+\varepsilon} D/d\right)$.

- Using "approximate near neighbor", we can solve "approximate nearest neighbor".
- Let d and D be the smallest and largest pair-wise distance, then set $R = d, (1 + \varepsilon)d, (1 + \varepsilon^2)d, \dots, D$
- Number of iterations: $O\left(\log_{1+\varepsilon} D/d\right)$.
- return a point found in the non-empty ball with the smallest radius, and answer it as the approximate nearest neighbor for q

- Using "approximate near neighbor", we can solve "approximate nearest neighbor".
- Let d and D be the smallest and largest pair-wise distance, then set $R = d, (1 + \varepsilon)d, (1 + \varepsilon^2)d, \dots, D$
- Number of iterations: $O\left(\log_{1+\varepsilon} D/d\right)$.
- return a point found in the non-empty ball with the smallest radius, and answer it as the approximate nearest neighbor for q

Tool for approximate nearest neighbor – Locality Sensitive Hashing!

2 LSH – a tool for sublinear time similarity search

3 Variants of LSH

4 LSH for other well-known similarity measure

Locality sensitive hashing (LSH): Intuition

LSH algorithm hashes "similar" items to same value (bucket) and "not-so similar" items to different values (buckets).

- Idea: Only examine those items where the buckets are shared
- (Pro) Designed correctly, only a small fraction of items are examined
- (Con) There maybe false negatives

Locality sensitive hashing (LSH) : formal definition [Indyk and Motwani, 98]

LSH

A family \mathcal{F} of hash functions is called (s, cs, p_1, p_2) -sensitive if for any two objects x and y

- if $Sim(x, y) \ge s$, then $Pr[h(x) = h(y)] \ge p_1$
- if $Sim(x, y) \le c.s$, then $Pr[h(x) = h(y)] \le p_2$
- probability over selecting h from \mathcal{F}
- c < 1, and $p_1 >> p_2$

1 Similarity Search Problem

2 LSH – a tool for sublinear time similarity search

3 Variants of LSH

4 LSH for other well-known similarity measure

- Data representation: Sets.
- Similarity measure: Jaccard similarity. For two sets x and y, their Jaccard similarity is defined as

$$\mathrm{JS}(x,y) = \frac{|x \cap y|}{|x \cup y|}$$

• For example: if $x = \{0, 3, 4\}$ and $y = \{1, 3, 5\}$, then JS(x, y) = 1/5.

Min-wise permutations – LSH for Sets over Jaccard Similarity [Broder *et. al.*, 1998]

Sets can also be represented as binary vectors.

Min-wise permutations – LSH for Sets over Jaccard Similarity [Broder *et. al.*, 1998]

Sets can also be represented as binary vectors.

π

Sets can be represented as binary vectors.

Permutation

6	7	1
3	6	2
1	5	3
7	4	4
2	3	5
5	2	6
4	1	7

Input Matrix

0	1	1	0
0	0	1	1
1	0	0	0
0	1	0	1
0	0	0	1
1	1	0	0
0	0	1	0

Signature Matrix

3	1	1	2
2	2	1	3
1	5	3	2

	1-2	2-3	3-4	1-3	1-4	2-4
Jaccard	1/4	1/5	1/5	0	0	1/5
Signature	1/3	1/3	0	0	0	0

Sets can be represented as binary vectors.

Permutation

6	7	1
3	6	2
1	5	3
7	4	4
2	3	5
5	2	6
4	1	7

Input Matrix

0	1	1	0
0	0	1	1
1	0	0	0
0	1	0	1
0	0	0	1
1	1	0	0
0	0	1	0

Signature Matrix

3	1	1	2
2	2	1	3
1	5	3	2

	1-2	2-3	3-4	1-3	1-4	2-4
Jaccard	1/4	1/5	1/5	0	0	1/5
Signature	1/3	1/3	0	0	0	0

Theorem

$$\Pr[h_{\pi}(x) = h_{\pi}(y)] = \frac{|x \cap y|}{|x \cup y|} = \operatorname{JS}(x, y).$$

Theorem

$$\Pr[h_{\pi}(x) = h_{\pi}(y)] = \frac{|x \cap y|}{|x \cup y|} = \mathrm{JS}(x, y).$$

Probability of collision is equal to their Jaccard similarity.

Theorem

$$\Pr[h_{\pi}(x) = h_{\pi}(y)] = \frac{|x \cap y|}{|x \cup y|} = \mathrm{JS}(x, y).$$

Probability of collision is equal to their Jaccard similarity. Question: Is it enough?

Theorem

$$\Pr[h_{\pi}(x) = h_{\pi}(y)] = \frac{|x \cap y|}{|x \cup y|} = \mathrm{JS}(x, y).$$

Probability of collision is equal to their Jaccard similarity. Question: Is it enough? NO!

Theorem

$$\Pr[h_{\pi}(x) = h_{\pi}(y)] = \frac{|x \cap y|}{|x \cup y|} = \operatorname{JS}(x, y).$$

Probability of collision is equal to their Jaccard similarity. Question: Is it enough? NO!

What do we want?

Minhash

What do we want?

Minhash

Idea: "Amplify the Gap"

- stack together many hash functions (say r)
 - probability of collision for similar objects decreases
 - probability of collision for dissimilar objects decreases much more
- repeat many times (say b)
 - probability of collision for similar objects increases

Figure: Minhash Sketch

Minhash – What b bands of r rows yields ?

- Suppose sets x and y share similarity s
- Pick any band (r rows)
- Pr that all rows in band equal: s^r
- Pr unequal: $1 s^r$
- Pr that no band is identical: $(1 s^r)^b$
- Pr that at least one band is identical: $1 (1 s^r)^b$

Minhash – What b bands of r rows yields ?

- Suppose sets x and y share similarity s
- Pick any band (r rows)
- Pr that all rows in band equal: s^r
- Pr unequal: $1 s^r$
- Pr that no band is identical: $(1 s^r)^b$
- Pr that at least one band is identical: $1 (1 s^r)^b$

Similarity $t=sim(C_1, C_2)$ of two sets \longrightarrow

Minhash – Picking appropriate values of b and r.

Theorem (Indyk and Motwani, 98)

Let $\mathcal{X} = \{x_i\}_{i=1}^n$, q be a given query, and $x^* \in \mathcal{X}$ s.t. $JS(x^*, q) \geq s$. If we set our hashing parameters

$$r = \log_{1/p_2} n; \qquad b = n^{\rho} \log(1/\delta)$$

where, $p_1 = s, p_2 = c.s, \rho = \frac{\log 1/p_1}{\log 1/p_2} \le \frac{1}{1+c}$. Then following two cases are true with probability $> 1 - \delta$: for some $i \in \{1, ..., b\}$, hash value of x^* and q collides no. of collisions with x' s.t. JS(x', q) < c.s is at most $\frac{b}{\delta}$.

Theorem (Indyk and Motwani, 98)

Let $\mathcal{X} = \{x_i\}_{i=1}^n$, q be a given query, and $x^* \in \mathcal{X}$ s.t. $JS(x^*, q) \geq s$. If we set our hashing parameters

$$r = \log_{1/p_2} n; \qquad b = n^{\rho} \log(1/\delta)$$

where, $p_1 = s, p_2 = c.s, \rho = \frac{\log 1/p_1}{\log 1/p_2} \le \frac{1}{1+c}$. Then following two cases are true with probability $> 1 - \delta$: • for some $i \in \{1, ..., b\}$, hash value of x^* and q collides • no. of collisions with x' s.t. JS(x', q) < c.s is at most $\frac{b}{\delta}$.

- Size of Hash table $= b \cdot r = O(n^{\rho} \log n)$
- Worst case query time = b = o(n)

1 Similarity Search Problem

2 LSH – a tool for sublinear time similarity search

3 Variants of LSH

4 LSH for other well-known similarity measure

Two-step approach for LSH

- Given a data set (representation) and the similarity measure, the aim find a hash function s.t. collision probability is monotonic to their similarity.
- Banding and repetition

Two-step approach for LSH

- Given a data set (representation) and the similarity measure, the aim find a hash function s.t. collision probability is monotonic to their similarity.
- Banding and repetition

LSH for other similarity measures

Data representation	Similarity	Reference
Sets	Jaccard	[Broder et. al., 1998]
Binary vectors	Hamming	[Gionis et. al., 1999]
Real-valued vectors	Cosine	[Charikar, 2002]
Real-valued vectors	Euclidean	[Indyk and Motwani, 98]

Thank You

Questions?