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Similarity Search in High Dimension

Given a query object and a database of objects the problem is
to find a similar object w.r.t. the query object.
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Similarity Search in High Dimension

Exact nearest neighbor

1 given a set X = {xi}ni=1 of objects (off-line)

2 given a query object q (query time)

3 find the object in X that is the most similar to q

Exact nearest neighbor for Euclidean distance

Feasible only when d is very small – “Curse of dimensionality”.
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Approximate Similarity Search

Idea: rather than retrieving for the exact nearest neighbor,
make a “good guess” of the nearest neighbor.

Approximate Nearest Neighbor: Problem Statement

given a set X of objects (off-line)

given accuracy parameter ε (off-line)

given a query object q (query time)

find an object z ∈ X that is most similar to q such that

dis(q, z) ≤ (1 + ε)dis(q, x),∀x ∈ X

Approximate Similarity Search can be done in sublinear time
with provable guarantee.



Approximate Similarity Search

Let’s first focus on an easier version of the problem
–approximate near neighbor

Approximate Near Neighbor

given a set X of objects (off-line)

given accuracy parameter ε and distance threshold R
(off-line)

given a query object q (query time)

find an object z ∈ X that is most similar to q such that

if there is object y in X s.t. dis(q, y) ≤ R,
then return object z in X s.t. dis(q, z) ≤ (1 + ε)R.
if there is no object y in X s.t. dis(q, y) ≤ (1 + ε)R, then
return NO!.



Approximate Near Neighbor



Approximate Near(est) Neighbor

Using “approximate near neighbor”, we can solve
“approximate nearest neighbor”.

Let d and D be the smallest and largest pair-wise distance,
then set R = d, (1 + ε)d, (1 + ε2)d, . . . ,D

Number of iterations: O
(
log1+εD/d

)
.

return a point found in the non-empty ball with the
smallest radius, and answer it as the approximate nearest
neighbor for q

Tool for approximate nearest neighbor – Locality Sensitive
Hashing!
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Locality sensitive hashing (LSH): Intuition

LSH algorithm hashes “similar” items to same value (bucket)
and “not-so similar” items to different values (buckets).

Idea: Only examine those items where the buckets are
shared

(Pro) Designed correctly, only a small fraction of items are
examined

(Con) There maybe false negatives



Locality sensitive hashing (LSH) : formal definition
[Indyk and Motwani, 98]

LSH

A family F of hash functions is called (s, cs, p1, p2)-sensitive if
for any two objects x and y

if Sim(x, y) ≥ s, then Pr[h(x) = h(y)] ≥ p1
if Sim(x, y) ≤ c.s, then Pr[h(x) = h(y)] ≤ p2
probability over selecting h from F
c < 1, and p1 >> p2
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LSH for Sets over Jaccard Similarity: An example

Data representation: Sets.

Similarity measure: Jaccard similarity.
For two sets x and y, their Jaccard similarity is defined as

JS(x, y) =
|x ∩ y|
|x ∪ y|

For example: if x = {0, 3, 4} and y = {1, 3, 5}, then
JS(x, y) = 1/5.



Min-wise permutations – LSH for Sets over Jaccard
Similarity [Broder et. al., 1998]

Sets can also be represented as binary vectors.
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Minhash – LSH for Sets over Jaccard Similarity

Sets can be represented as binary vectors.

Theorem

Pr[hπ(x) = hπ(y)] = |x∩y|
|x∪y| = JS(x, y).



Minhash – LSH for Sets over Jaccard Similarity

Sets can be represented as binary vectors.

Theorem

Pr[hπ(x) = hπ(y)] = |x∩y|
|x∪y| = JS(x, y).



Minhash – LSH for Sets over Jaccard Similarity

Theorem

Pr[hπ(x) = hπ(y)] = |x∩y|
|x∪y| = JS(x, y).

Probability of collision is equal to their Jaccard similarity.

Question: Is it enough? NO!
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What do we want?



Minhash

What do we want?



Minhash
Idea: “Amplify the Gap”

stack together many hash functions (say r)
probability of collision for similar objects decreases
probability of collision for dissimilar objects decreases much
more

repeat many times (say b)
probability of collision for similar objects increases

Figure: Minhash Sketch



Minhash – What b bands of r rows yields ?

Suppose sets x and y share similarity s
Pick any band (r rows)
Pr that all rows in band equal: sr

Pr unequal: 1− sr
Pr that no band is identical: (1− sr)b
Pr that at least one band is identical: 1− (1− sr)b
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Minhash – Picking appropriate values of b and r.

Theorem (Indyk and Motwani, 98)

Let X = {xi}ni=1, q be a given query, and x∗ ∈ X s.t.
JS(x∗, q) ≥ s. If we set our hashing parameters

r = log1/p2 n; b = nρ log(1/δ)

where, p1 = s, p2 = c.s, ρ = log 1/p1
log 1/p2

≤ 1
1+c .

Then following two cases are true with probability > 1− δ :

1 for some i ∈ {1, ..., b}, hash value of x∗ and q collides

2 no. of collisions with x′ s.t. JS(x′, q) < c.s is at most b
δ .

Size of Hash table = b.r = O(nρ log n)

Worst case query time = b = o(n)
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LSH for other similarity measure

Two-step approach for LSH

Given a data set (representation) and the similarity
measure, the aim find a hash function s.t. collision
probability is monotonic to their similarity.

Banding and repetition

LSH for other similarity measures

Data representation Similarity Reference

Sets Jaccard [Broder et. al., 1998]
Binary vectors Hamming [Gionis et. al., 1999]

Real-valued vectors Cosine [Charikar, 2002]
Real-valued vectors Euclidean [Indyk and Motwani, 98]
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Questions?
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