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Introduction

Definition(?)

Clustering is the task of grouping a set of objects such that similar
objects end up in the same group and dissimilar objects end up in
different groups.

What do we mean by “similar”, “dissimilar” objects?

But before that, let’s look at some applications.

Apoorv Vikram Singh (IISc Bangalore) Clustering Perturbation Resilient Instances Dec 1, 2018 3 / 38



Introduction

Application

Search engines try to group similar objects in one cluster and the
dissimilar objects far from each other. It provides result for the
searched data according to the nearest similar object which are
clustered around the data to be searched.

Exploratory data-analysis, almost across all disciplines.
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Introduction

Definition(?)

Above description of similarity is vague, it is not at all clear how to
define rigorously the notion of similarity.

One of the problems as mentioned in is that the notion of similarity is
not a transitive relation, while cluster sharing relation is an
equivalence relation.

Both the clusterings are equally justifiable. A given data-set may be
clustered in various meaningful ways.
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Introduction

One more problem is the lack of “ground-truth” for clustering. There
is no absolute success evaluation procedure for clustering.

One of the popular approaches is to define a cost function over a
parameterized set of possible partition.

the goal of the clustering algorithm is to find a partitioning that
outputs a minimum/minimal cost clustering.

Among the most popular ones, are the k-means, k-median,
k-medoids, k-centers, etc.

We will mostly focus on the k-means clustering algorithm.
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k-Means

Definition

Group the data into k clusters C = {C1,C2, . . . ,Ck} so as to
minimize the squared sum of distances from elements to the centers
of mass of their clusters µ = {µ1, µ2, . . . , µk}.

argminC1,...,Ck

k∑
i=1

∑
x∈Ci

‖x − µi‖2 .
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k-Means

k-means is hard!!

[Aloise et al., 09], [Dasgupta et al., 09], [Mahajan et

al., 12] Optimization of the k-means objective is NP-hard in the
worst case (even k = 2 or d = 2).

[Awasthi et al., 15] There exists an ε > 0 such that it is
NP-hard to approximate the k-means objective to within a factor of
(1 + ε).

Doesn’t really stop us from designing algorithms.
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k-Means

Lloyd’s Algorithm

Lloyd’s Algorithm
1 Start with k centers µ1, . . . , µk arbitrarily.
2 Assign every x ∈ X to the cluster Ci whose cluster center ci is closest

to it, i.e., ‖x − µi‖ ≤ ‖x − µj‖ for all j 6= i .
3 Set µi = 1

|Ci |
∑

x∈Ci
x .

4 If clusters or centers have changed go to step 2. Otherwise, terminate.

Motivation: Parallel Axis Lemma

n∑
i=1

‖ai − x‖2 =
n∑

i=1

‖ai − µ‖2 + n ‖µ− x‖2 .
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k-Means

Lloyd’s can be bad!

There is no provable bound Lloyd’s algorithm achieves. The cost can
be arbitrarily bad.

There are also known worst-case instances where the popular Lloyd’s
algorithm takes exponentially many iterations to converge to a local
optimum.

However, Lloyd’s work quite fast in real life!

[Arthur et al., 09] Lloyds algorithm has a smoothed running
time polynomial in n.
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k-Means

Lloyd’s can be bad!

Figure: A locally-optimal but globally-suboptimal k-means clustering.
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k-Means

k-means known results

[Inaba et al., 94] PTAS when both k , and d are constant.

[Kumar et al., 04] PTAS only when k is assumed to be a
constant.

[Cohen-Addad et al., 16], [Friggstad et al., 16] PTAS
only when d is assumed to be a constant.

[Ahmadian et al., 17] 6.357 + ε-approximation algorithm for
k-means.
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k-Means

In practice, clustering algorithms like Lloyd’s work very well on real
world data sets.

This dichotomy between the theoretical intractability and the
empirical observations has lead to the CDNM thesis: Clustering is
difficult only when it does not matter!

This has lead to a study of “Beyond Worst Case Analysis”. The idea here
is to assume something about the structure of the input itself, and then
design provable algorithms accordingly.
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Beyond Worst Case Analysis

Intuition

Hard
Easy(?)

Trivial

How do we formalize the easiness?
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Beyond Worst Case Analysis Perturbation Resilience

Additive Perturbation Resilience

Let the optimal clustering be C = {C1, . . . ,Ck}.
Move each point by a factor of εD in arbitrary direction, where D is
the largest pairwise distance between optimal means.

If even after additive perturbation, the clustering remains the same,
then the instance is ε-additive perturbation resilient (ε-APS).

Simple observation: Smallest distance between any two clusters is
greater than (2 εD).... there’s more...
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Beyond Worst Case Analysis Perturbation Resilience

Geometry of ε-APS

Figure: An ε-APS instance.

The half angle of the cone is arctan(1/ε).

Can use “perceptron”-based algorithm, due to the geometry.
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Beyond Worst Case Analysis Perturbation Resilience

α-Perturbation Resilient

Here instead of moving each point by an additive factor, we change
the “edge weights” by a multiplicative factor of α ≥ 1.

If even after this, the clustering remains the same, then we say that
the instance is α-perturbation resilient.

We will try to exploit the geometry of such instances...
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Beyond Worst Case Analysis Perturbation Resilience

α-Center Proximity

A clustering is α-center proximal, if the ratio of the distance between
a point and its cluster center, and the distance between that point to
any other cluster center is less than or equal to 1/α.

∀i 6= j , x ∈ Ci , : dist(x , µj) > α dist(x , µi ) .

Theorem: α-perturbation resilience implies α-center proximity.

We will work with α-center proximal instances (a weaker condition
than α-perturbation resilience).
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Beyond Worst Case Analysis Perturbation Resilience

Our Contribution

[Angelidakis et al, 17] gave an algorithm which runs in time
polynomial in n, d , and k for values of α ≥ 2 (best known).

We give an algorithm (assuming k is a constant), linear in n, d , and
exponential in k and 1

α−1 . This works for any value of α > 1.

We return the exact clustering!! in O
(
nd2poly( k

α−1
)
)

.

Hard to approximate!

Let us look at the geometry of α-center proximal instances.
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Beyond Worst Case Analysis Perturbation Resilience

Geometry of center proximal instances

Di ,j =
(
α2+1
α2−1

)
‖µi − µj‖

µ̂i ,j µi µ̂j ,iµj

Di,j

α2+1

(
αDi,j

α2+1

)
= ri ,j

θ

θ = tan−1
(

2α
α2−1

)
u

di ,j = (α−1)2

α2+1
Di ,j

pi ,j =
µi+µj

2Ci ,j Cj ,i
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Beyond Worst Case Analysis Perturbation Resilience

Main Theorem

Desired Clustering: All the clusters are balanced, i.e., the size of the
largest cluster to the smallest cluster is some constant.

Our “similarity” assumption is the k-means similarity, and the
“ground-truth” clustering is the α-center proximal instance.

Theorem: Given a promise that the clustering desired (k-means
similarity measure) is “balanced”, and α-center proximal, then our
algorithm will output the exact desired clustering with high probability

in time O
(
nd2poly( k

α−1
)
)

.

One can iterate over various values of α and “balanced” ratio.
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Beyond Worst Case Analysis Perturbation Resilience

Main Idea

One can get approximately close to the centers.

Center proximity implies bounded radius of the clusters.

Approximate Caratheodory Theorem: Sample points uniformly at
random from a cluster (of bounded radius), and mean of those
samples will get you close to the actual mean.
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Beyond Worst Case Analysis Perturbation Resilience

The Algorithm

1 From the given data, sample a constant (depends on α, k) number of
points.

2 Find all k-partitions of the sample. Iterate over all the possible
k-partitions:

1 For each possible k-partition, find the mean (sampled means) of the k
clusters.

2 Assign points in the original data-set to the k-clusters on the basis of
distance to the sampled means.

3 Store this clustering.

3 For each of the stored clusterings obtained, verify if the clusters satisfy
α-center proximity, and output the minimum cost one among them.
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Beyond Worst Case Analysis Perturbation Resilience

Clustering with Outliers

For x ∈ Ci , dist(x , µj) > α dist(x , µi ).

Moreover, x ∈ Ci and y ∈ Z we have dist(y , µj) > α dist(x , µi ).

The same algorithm can be used because we are happy with the
approximate means.
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Beyond Worst Case Analysis Perturbation Resilience

Lower Bounds

The exponent in 1
α−1 is expected, since, when α = 1, it corresponds

to any general instance of k-means.

For any 2 > α′ > 1 there exists an α ≤ α′, (α > 1), constants ε > 0,
and ω > 0, such that it is NP-hard to approximate the optimal
α-center proximal Euclidean k-means, where the size of each cluster
is at least ωn/k , to a factor better than (1 + ε).

Follows from hardness of approximation for Euclidean k-Means
(Awasthi et al. ’15)

Number of clusterings can be huge: For any 2 > α′ > 1, and any
k ∈ Z+, there exists α ≤ α′ (and α > 1), n, d and a set of points
X ∈ Rd such that such that the number of possible optimal α-center

proximal clusterings is 2Ω̃(k/(α2−1)).
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Beyond Worst Case Analysis Perturbation Resilience

Comments on the Algorithm

The algorithm is closely related to the one given by [Kumar at al.,

04].

Can be extended to handle a certain class of outliers (points which
are far away from optimal means).

Can return a clustering of a desired cost as well (and not only
minimum).
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Beyond Worst Case Analysis Perturbation Resilience

Speeding it up

Under one more assumption of stability, i.e., the points which are “far
away” from the optimal centers give a significantly worse cost
compared to the original cost, we can speed up the algorithm.

Heuristic: Use some state of the art clustering algorithm (like
k-means-++), on the sampled data-set and use the clustering induced
by them on the original data-set. (we loose all guarantees here :( )
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Min-Max k-Means

Min-Max k-Means

Given a clustering C1, ...Ck , its min-max k-means cost is defined as

max
l∈[k]

∑
xi∈Cl

‖xi − µl‖2 .

We want to minimize the cost of the heaviest cluster.

Implies that each of the cluster has small cost.

It is somewhere between k-means and k-center clustering.
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Min-Max k-Means

O (1) approximation for k-means implies O (k) approximation for
min-max k-means.

Related Work: Min-Max k-Median

- [Ahmadian et al.]- approximation algorithms for line metrics and star
metrics.

- [Even et al.]- (4, 4)-bi-criteria approximation.
- [Arkin et al.]- (3, 3)-bi-criteria approximation.

Related to scheduling problems.
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Min-Max k-Means

Estimating Means Suffices?

Let S be a set of points obtained by i.i.d. uniformly sampling M points
from a point set X ⊂ Rd . Then for any δ > 0,

P
[
φµ(S)(X ) ≤

(
1 +

1

δM

)
·∆(X )

]
≥ (1− δ),

where ∆ is the 1-means cost of X . For for k = 1 we are done. What
about k ≥ 2?.
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Min-Max k-Means

Estimating Means Suffices?

Theorem: Given a set of centers, assigning points to those centers to
minimize the min-max k-means cost is NP-hard to approximate to a factor
better than (3/2− ε).

� Reduce from minimum makespan scheduling to min-max k-means.
Result follows from [Lenstra et al.]

- Each machine mapped to x = 0.
- Job j with processing time pj is at a distance of

√
pj from the origin.
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Min-Max k-Means

Estimating Means Suffices!

Make use of the algorithms for minimum makespan scheduling.

- k- centers corresponds to k- machines.

- n- points corresponds to n jobs, with processing time
pij = ‖xi − µj‖2 .

- Run the algorithm for minimum makespan scheduling on unrelated
machines.

Minimum makespan scheduling

- [Lenstra et al.] 2-approximation algorithm in time poly(n, k).

- [Jansen & Mastrolilli] (1 + ε)-approximation in time Õ
(

2Õ(k)n
)

.
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Min-Max k-Means

Algorithm

- Sample poly(k/ε) points.

- Go over all k partitioning of these points and get a candidate set of
centers.

- Run the minimum makespan scheduling algorithm by Jansen and
Mastrolilli.

- Output the minimum cost clustering.

Theorem: (1 + ε)-approximation in time O
(
2poly(k/ε)nd

)
.

- Uniformly sampling might not work in case of small cluster.
[Bhattacharya et al. ’18] give an algorithm for this.
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Min-Max k-Means

Bi-criteria Approximation

Motivated by the previous works, we know that estimating means suffices.

- What if we are allowed to sample a bit more than k points?

- Aim: to obtain a set of more than k centers such that all the points
xi are “close” to them.

- And then use the 2 approximation algorithm for scheduling problem.
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Min-Max k-Means

How to achieve that aim?

D2-Sampling: Sample a new point proportional to the squared distance
from the current set of samples.

- Initialize S = ∅
- Pick x from X with probability proportional to
d(x , S)2 = miny∈S ‖x − y‖2.

- Add x to S and repeat.

� [Arthur et al.] k-means ++ gives O (log k) approximation to
k-means.

- [Deshpande et al.] use k-means++ to get (O (1) ,O (1))
approximation to k-means.
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Min-Max k-Means

Analysis

Essentially use the same kind of analysis. Either the point in the
current sample gives a good approximation to some centers or the
new point comes from an uncovered cluster.

Use scheduling algorithm.

Sample (1 + ε)k points and we get O
(
1/ε6

)
approximation to

min-max k-means.
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Future Directions

Open Problems

Is there some other algorithm with running time polynomial in k as
well for values of α a bit away from 1?

Since the Lloyd’s algorithm works so well in real life, can we use an
algorithm similar in flavour to the Lloyd’s algorithm.

Other notions of stability, which are can be tested in sub-linear time.

Suitable notions of perturbation resilience for other clustering
objectives.

Constant factor approximation algorithm for min-max k-means?
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Future Directions

Thank You.
Questions?
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